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Abstract NMR spectroscopy is a widely used technique

for characterizing the structure and dynamics of macro-

molecules. Often large amounts of NMR data are required

to characterize the structure of proteins. To save valuable

time and resources on data acquisition, simulated data is

useful in the developmental phase, for data analysis, and

for comparison with experimental data. However, existing

tools for this purpose can be difficult to use, are sometimes

specialized for certain types of molecules or spectra, or

produce too idealized data. Here we present a fast, flexible

and robust tool, VirtualSpectrum, for generating peak lists

for most multi-dimensional NMR experiments for both

liquid and solid state NMR. It is possible to tune the quality

of the generated peak lists to include sources of artifacts

from peak overlap, noise and missing signals. Virtual-

Spectrum uses an analytic expression to represent the

spectrum and derive the peak positions, seamlessly han-

dling overlap between signals. We demonstrate our tool by

comparing simulated and experimental spectra for different

multi-dimensional NMR spectra and analyzing systemati-

cally three cases where overlap between peaks is particu-

larly relevant; solid state NMR data, liquid state NMR

homonuclear 1H and 15N-edited spectra, and 2D/3D

heteronuclear correlation spectra of unstructured proteins.

We analyze the impact of protein size and secondary

structure on peak overlap and on the accuracy of structure

determination based on data of different qualities simulated

by VirtualSpectrum.

Keywords Software � Simulation of spectra � Solid state

NMR � Intrinsically disorder proteins � Protein structure �
Peak overlap

Introduction

Structures of proteins and nucleic acids have been deter-

mined by NMR spectroscopy for almost three decades now

(Wüthrich 1986; Williamson et al. 1985; Driscoll et al.

1989). The fundamental processes of assignment of reso-

nances to nuclei and assignments of NOE signals, to derive

distance constraints, still remain challenging problems,

particularly where there is significant signal overlap. This

is especially true for large proteins, natural abundance

studies, largely unstructured or intrinsically disordered

proteins (IDPs) (Wright and Dyson 1999), and proteins

studied by solid state NMR (ssNMR) (see references

below). Software for simulating different NMR spectra on

the fly based on derived or expected resonance assignments

(and a structure model in case of through-space experi-

ments such as NOESY (Jeener et al. 1979)), is valuable for

validating both the candidate resonance assignments and/or

the model structure. Software has been developed for the

automation and semi-automatic/iterative analysis of the

resonance assignment (Bartels et al. 1997; Zimmerman

et al. 1997; Jung and Zweckstetter 2004; Malmodin et al.

2003; Moseley et al. 2001; Moseley and Montelione 1999)

as reviewed in Guerry and Herrmann 2011, and has
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recently also been developed for solid state NMR (Moseley

et al. 2010; Tycko and Hu 2010; Hu et al. 2011). Similar

software also exist to handle the assignment of through

space signals from both NOESY type experiments (Herr-

mann et al. 2002; Linge et al. 2001, 2003; Nilges 1995;

Nilges et al. 1997; Rieping et al. 2007) and ssNMR

experiments, such as DARR (Takegoshi et al. 2001; Fossi

et al. 2005; Loquet et al. 2010). Both processes use lists of

picked peaks as input and therefore a procedure for gen-

erating synthetic peak lists would be useful for evaluating

the performance of the software. Such software makes it

possible to assess the efficiency of an NMR experiment by

simulating the corresponding peak list and evaluating its

impact by including it in data sets for performing either

automated resonance assignment or structure calculation,

before performing experiments.

Software exist to simulate expected peaks as idealized

signal positions (Schneider et al. 2013; Gradmann et al.

2012) and to generate the spectra from the signal positions

for some special cases (Matsuki et al. 2007). In particular,

software has been published to generate 1D 1H NMR

spectra for small molecules (Binev and Aires-De-Sousa

2004; Golotvin et al. 2007; Advanced Chemistry Devel-

opment, Inc. (ACD/Labs), NMR predictors 2007) and 2D
1H–1H NOESY spectra for biomolecules (Gronwald and

Kalbitzer 2004; Donne et al. 1995; Zhu and Reid 1995;

Allard et al. 1997) and more general types of spectra as part

of larger NMR data visualization software packages

(Goddard; Delaglio et al. 1995; Vranken et al. 2005; Ste-

vens et al. 2011). If the resonance line width is large

compared to the resonance dispersion, some signals will

overlap and fewer peaks compared to the number of signals

will be observed. Therefore, the observed (merged) peak

positions needs to be derived by performing peak picking

on the generated spectra.

Here we present a stand-alone software, VirtualSpec-

trum, which combines the two procedures, bypassing the

need for spectrum visualization software and peak picking,

by generating an in-memory representation of the simu-

lated spectrum and deriving the observed peak positions

from this representation. VirtualSpectrum produces peaks

by defining an analytic expression for the spectrum as a

sum of Gaussian shape densities centered at the expected

individual signal positions based on an underlying struc-

tural model. By definition here, a peak is observed for each

local maximum above a certain threshold in the space of

the virtual spectrum. If signals overlap on the scale of the

line width, fewer maxima (peaks) than signals will be

observed. VirtualSpectrum is a general tool applicable for

most multi-dimensional NMR experiments, both in the

liquid and the solid state, and produces assigned peak lists,

with a quality representative of observed peaks. A repre-

sentative quality means here that the peak lists not only

contains peaks in the expected positions but also includes

data artifacts, such as a tunable number of noise peaks,

perturbed peak positions, and an option to include missing

peaks in ssNMR experiments, originating from flexible

regions of a protein. VirtualSpectrum is available at http://

nmr.au.dk/software/.

Here we demonstrate the applicability of VirtualSpec-

trum by analyzing a few case studies for which overlap

between peaks is particularly relevant. We study the

grouping of aligned peaks into spin systems in ssNMR and

quantify the amount of overlapping signals in different

multi-dimensional ssNMR spectra. Understanding how

different parameters effects the extent of overlap between

peaks is important for designing and choosing between

different NMR experiments. Here we analyze systemati-

cally the amount of overlapping peaks at different line

widths and for different protein sizes and secondary

structures in homonuclear 1H and 15N-edited spectra, and

2D/3D heteronuclear correlation spectra of intrinsically

disordered proteins. Finally, we judge the impact of spec-

tral resolution in structural studies by the use of simulated

spectra and Cyana (Herrmann et al. 2002) structure

calculations.

Methods

VirtualSpectrum calculates simulated peak lists based on

provided resonance assignments and protein primary

sequence. Most common NMR experiments can be simu-

lated, and even more can be implemented, by providing the

definition of the nuclei and residue positions involved in

the experiment. Both through-bond and through-space

transfers are implemented. For through-space experiments

a structural model must be provided. If a X-ray structure,

with B-factors, is provided it is possible to model signal

attenuation due to mobility, in through-space ssNMR

experiments.

Calculating the model signals

First a peak list is inputted to derive the observed peaks.

Assume that the resonances of interest are assigned:

X ¼ x1;x1; . . .;xNð Þ ð1Þ

A model peak list is a set of peaks, p, having a vector

coordinate and a height, i.e. satisfying:

p ¼ ðx; hÞ 2 Xn � R
þ; h ¼ mðdÞ;X�!m R

þ ð2Þ

where p is a peak, which is defined by its height, h, and

frequency (position), x, and m is an underlying model,

which takes the distance, d, as input, for the NMR exper-

iment. The implementation here for the underlying model
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is described in Eq. 3 below. The experiment type defines

which atoms are connected in the experiment giving rise to

cross peaks, which are observed at values determined by

the resonance assignments of the corresponding atoms.

Most common experiments can be simulated or can be

defined by the user through definition of each transfer step.

The procedure requires, for each axis of the peak coordi-

nates, a definition of the atom type i.e. 1H, 15N, or 13C,

residue order 0 or -1 (=‘‘None’’ for through-space),

denoting atoms for residues i and i-1, respectively, and in

some cases specific atom (atom name) such as C0, Ca or

Cb. For example for NCACX, atom type = (15N, 13C,
13C), residue order = (0, 0, 0), atom name = (N, Ca,

None), where ‘‘None’’ denotes a non-specific atom.

VirtualSpectrum implements a general low-level theory

model to calculate the height based on the distance

between the atoms involved. The model signals can also be

provided by third-party software such as e.g. CORMA

(Keepers and James 1984) or IRMA2 (Boelens et al. 1988).

The model height here is proportional to each of the

transfer efficiencies of each magnetization step, fi. For

through-bond experiments this number is set to 1.0 and for

through-space experiments a more advanced expression is

used (Eq. 4). As implemented here, the model function, m,

is defined for a set of atoms (i, i ? 1,…, n) assuming the

distances, d = (di,i?1, di?1,i?2, …, dn-1,n), between the

atoms involved in the individual transfer steps and

optionally the atomic B-factors, B = (Bi, Bi?1, …, Bn),

obtainable from an X-ray structure are known if these are

present in the input pdb file.

mðd;BÞ ¼
Yn�1

i¼1

fiðdi;iþ1Þ
Yn

i¼1

giðBiÞ ð3Þ

The B-factors are used to model local dynamics influ-

ence on intensities as described in Eq. 6. For through-space

transfer steps we use a phenomenological expressions for

the intensity:

fi dð Þ ¼ Fije
�bið1� e�cid

�6Þ; bi; ci [ 0

ffi
Fije

�bi cid
�6 for cid

�6 � 1

Fije
�bi for cid

�6 � 1

(
ð4Þ

This is a two-parameter buildup-type model, which can

be interpreted as a spin diffusion process defined by two

constants (Macura and Ernst 1980); the correlation rate

between two atoms multiplied by the mixing time, c, and a

leakage rate to the surroundings multiplied by the mixing

time, b. Thus, experiments with longer mixing times will

have larger values of b and c (proportional to the mixing

time in theory). In practice a cut-off distance, dmax, is used

for which intensities corresponding to larger distances are

set to zero.

The distance dependent expression is multiplied with a

constant, Fij, to model differences in transfer efficiency,

which can account for properties involving other nuclei

than the considered spin pair, i and j, such as spin diffusion

and orientation dependence in solid state NMR. The ran-

domized multiplier is defined as:

Fij ¼ F0Lij; Lij� logNð1;rÞ ð5Þ

where Lij is a random number drawn from a log-normal

distribution with scaling parameter r for each atom. F0 is a

constant, which is set to 1.0 for liquid state NMR. For

ssNMR, F0 is largest for intra-residue atom pairs and

smaller for inter-residue contacts to model the influence of

spin-diffusion in agreement with experimental data.

The gis are atomic scaling factors modeling the uneven

excitation of spins in NMR experiments, which are very

pronounced in ssNMR spectra.

gi Bð Þ ¼ Gi

B0

B

� �pi

ð6Þ

B0 and pi are positive constants, near-zero values of p leads

to decreasing significance of the atomic scaling factor (gi).

Gi is a constant.

The noise-level of a spectrum is modeled by rejecting

every model peak with a height, h, below a specified

minimum intensity threshold, hmin.

Deriving the observed peaks

Based on the model signals, an analytic expression is

derived to represent the full spectrum at any chemical shift

coordinate, the ‘‘virtual spectrum’’. The intensity, q, in the

virtual spectrum is calculated as a sum of Gaussian curves,

qi, centered at the model signal positions, xi, and propor-

tional to the calculated model height, hi:

q xð Þ ¼
X

i

qi xð Þ;

qi xð Þ ¼ hi

Yn

j¼1

exp � 1

2

xj � xj;i

Cj

� �2
 ! ð7aÞ

where Cj is the Gaussian line width of the resonances in the

jth dimension. The theoretical observed peak positions are

the local maxima, c0, of q. The corresponding peak heights

are defined as h = q(c0). It is also possible to use a Lo-

rentzian peak shape:

qi xð Þ ¼ hi

Yn

j¼1

1= 1þ xj � xj;i

Cj

� �2
 !

ð7bÞ

In practice, the local maxima, c0, are found by per-

forming a numerical optimization (Nocedal and Wright

2000) as implemented in the scipy python module (Oli-

phant 2007) (http://www.scipy.org/). The function
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optimization is initialized, as parallel computations, with a

starting guess equal to the position of all model signals one

by one. Optimizations with different starting guesses near

the same local maximum (as would be the case for two

overlapping signals) yield almost equal solutions. The

slightly different solutions are easily combined into

observed peak positions using a clustering procedure. In

practice, only a subset of the signals in Eq. 7a, 7b, which

are near the starting guess, is included in the function

optimization.

The observed peak position, c, is obtained after adding

an error, e, to the initial position, c0:

c ¼ c0 þ e; e ¼ e1ðh;C1Þ; . . .; enðh;CnÞð Þ ð8Þ

ei h;Cið Þ ¼ z emin þ kCi e0 þ 1=max m0; ln
h

h0

� �� �� �� �

ð9Þ

where z is a random number drawn from the standard

normal distribution and emin, e0, k, m0 and h0 are constants

that are set by the user. The values used in the demon-

stration of the software are discussed in further detail

below. The logarithmic expression leads to low-intensity

peaks having larger errors added to the peak position. Both

sources of error proportional to the line-width of the res-

onances and independent of the line-width are present in

the expression describing the error. To illustrate the diffi-

culties in finding an accurate position for overlapped sig-

nals, e0 was set to 0 if only one single model peak had a

significant contribution to the density in the virtual spec-

trum at the observed peak position (defined as the peak is

resolved, see Eq. 11), and 0.3 alternatively.

The random numbers, z above and Lij, in Eq. 5 imply

that the generation of peak list can be repeated with dif-

ferent results in each new run. Furthermore, a small ran-

dom number l0 * N(0, sl) is added to each coordinate of

the model signal positions, xi, before calculation of the

virtual spectrum, to allow for more representative differ-

ences between observed symmetry-related peaks on either

side of the diagonal. This procedure, indirectly, also

models differences in the line-widths in the direct and

indirect dimensions.

Noise peaks can be added to the peak list. The position,

c, of the noise peak is derived by drawing a random

position, x, from the set of resonances Xn (Eq. 1) and

adding a random small shift e.

c ¼ xþ �; ��Nð0;CÞ ð10Þ

The random additive shift can be drawn from a normal

distribution with a scale parameter equal to the line width

as above. The procedure above produces only noise peaks

that align approximately with other observed peaks, as

these are the only peaks that would interfere with a good

assignment of the spectra.

The artificial data generated by VirtualSpectrum can be

customized to test the impact of different quality parame-

ters in subsequent tasks such as resonance assignments and

structure calculation. The sensitivity can be increased by

lowering the noise threshold, hmin, or decreasing the line

width, C, of the resonances (Eq. 7a, 7b) leading to more

peaks being picked due to decreasing overlap in the spec-

tra. The data can be made noisier by adding more noise

peaks. Changing the constants in Eq. 9 (e.g. decreasing

emin, e0 or k) can increase the accuracy in the pick posi-

tions. Also, the excitation heterogeneity can be increased

by choosing larger value of the powers pi in Eq. 6.

Parameters used and a guide for choosing parameters

for the simulation of NMR peak list

with VirtualSpectrum

In the applications of VirtualSpectrum discussed in this

publication, several parameters were used to produce

simulated data as close to the experimental data as possi-

ble. Some parameters had fixed values, whereas some had

different values depending on the systems studied, and

finally, some were varied systematically. The parameter

(pi) used to simulate the excitation heterogeneity (Eq. 6)

(only used for ssNMR data) used pi = 1.4 and 0.35 for the

first and subsequent transfers, respectively. Higher values

mean a larger spread in the simulated excitation hetero-

geneity, for most cases values between 0 and 2 are good

choices. B0 is a reference B-factor and B0 = 10 was used

here and is the default. This value corresponds roughly to

the average B-factor in crystal structure for the proteins

studied here, but for other systems a different reference

B-factor might be more appropriate. Gi (Eq. 6) was set to

unity in all cases, except for ssNMR where Gi = 0.8 for

aromatic carbons was used to model the attenuated inten-

sities for those spins. With the current implementation of

VirtualSpectrum it is only possible to choose non-unity

values for aromatic carbons and carbonyl.

For the scale parameter, r (Eq. 5), which controls the

random number generation for each atom pair, r = 0.5

was used, large values lead to a larger spread in the

dynamic range of intensities. The intensity accounting for

transfer efficiencies was set to F0 = 1.0 (Eq. 5) for liquid

state NMR. F0 = 0.1 and 0.033 for ssNMR for sequential

(adjacent residues) and medium range/long range (residue

number difference [ 3) transfers, respectively, and 1.2 for

intra-residue. The higher value used for intra-residue cross

peaks was chosen to model the observation in the ssNMR

data presented here that, for the short mixing times used

here, intra-residue correlations were highly abundant due to
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efficient spin diffusion. For longer mixing times, larger

values 0.5 \ F0 \ 1.0 should be used.

For all ssNMR and liquid state data, sl = 0.05 ppm and

0.001 ppm, respectively, were used to simulate noise in the

peak positions. If one wishes to simulate peak lists for

cases where experimental data is available, this parameter

can be estimated from the variation in peak positions along

a peak strip corresponding to the same isolated resonance.

The noise constants in Eq. 9: h0 = 0.75, k = 0.333,

m0 = 0.8, and emin = 0.1 for 3D homo-nuclear carbon,

emin = 0.002 for 3D liquid state experiments, otherwise

emin = 0 was used. For resolved signals (Eq. 11), e0 = 0.0

(Eq. 9) was used whereas e0 = 0.3 was used for non-

resolved peaks to model greater uncertainty in picking

overlapped peaks correctly. We argue that these are

appropriate default values; choosing larger values for e0 (or

smaller values for emin) will produce noisier data.

Through-space transfer (Eq. 4) were simulated with

constants defined with the help of a maximum intensity,

I0 = e-b, 0 \ I0 \ 1.0, and a characteristic distance, rmin,

where a peak usually would be observed in 50 % of the

cases when hmin = 0.1, where hmin is the noise level above

which a peak is defined as observable. The effect of dif-

ferent choices of rmin is visualized in Figure S1. Values of

rmin close to 5 Å should be used to model long mixing

times together with lower values for I0. Smaller values for

rmin will lead to less intense peaks and a larger dynamic

range in the intensities corresponding to peaks for short and

longer distances. Since the height at the maximum of the

strongest peaks in the spectrum is close to 1.0, hmin cor-

responds to the inverse of the signal to noise ratio,

SN = hmin
-1 . The following relationship was used to calcu-

late c: c = 0.1/I0 * rmin
6 . All NOESY type spectra used,

rmin = 4.0 Å, I0 = 0.4, SN = 75. For the ssNMR data

rmin = 4.0, 3.8, 3.3 Å, and I0 = 0.4, 0.9, 0.9 were used for

2D 13C–13C through-space correlation (DARR-type), 3D

NCACX, and NCOCX, respectively. The signal to noise

ratios used were SN = 15, 12, 12, 8, and 25 for NCACO,

NCACX, NCOCX, CONCA, and DARR-type, respec-

tively, and SN = 75 for NOESY type spectra. Only the

aliphatic side chain resonances were included in the

NCACX and NCOCX spectra. The resonance line width

(Eq. 7a, 7b) was varied systematically for all types of

spectra and the particular values are described in the text

and the related figure legends.

Results and discussion

VirtualSpectrum was applied to simulate peak lists for

several types of multidimensional NMR spectra for dif-

ferent proteins. The simulated spectra, used to generate the

simulated peak lists, were compared to the experimental

spectra for some of the proteins to test the procedure. We

have chosen to focus on three cases where overlap between

signals are particularly significant: (1) solid state NMR

(ssNMR) with 13C-detection having relatively large 13C

and 15N line widths, (2) homonuclear 1H and 15N-edited

spectra for which overlap is especially significant in 2D
1H–1H NOESY spectra, (3) unstructured/intrinsically dis-

ordered proteins (IDPs) where the reduced chemical shift

dispersion due to lack of regular structure leads to

increased overlap of signals. Peak lists for different mul-

tidimensional spectra were simulated for the three proteins:

the immunoglobulin binding domain B1 of streptococcal

protein G (GB1) (Bouvignies et al. 2006; Gallagher et al.

1994), Ubiquitin (Zech et al. 2005; Igumenova et al. 2004;

Vijaykumar et al. 1987), and Hen Egg White Lysozyme

(Blake et al. 1965; Redfield and Dobson 1988) (HEWL). A

subset of the spectra was also simulated for the intrinsically

disordered cytoplasmic domain of human neuroligin-3

(hNL3-Cyt) (Wood et al. 2012; Paz et al. 2008). Protein

structures used to model the through-space transfers were

downloaded from the RCSB Protein Data Bank (PDB;

http://www.rcsb.org/pdb/) (Berman et al. 2000) and

chemical shifts assignments were retrieved from the Bi-

oMagResBank (BMRB; www.bmrb.wisc.edu) (Ulrich et al.

2008). The aim here was not to exhaustively characterize

all possible aspects of the three case studies, but to provide

proof-of-concept demonstration of the applicability of our

software. We chose here to focus on analyzing the number

of resolved signals, comparing various conditions and

comparing between three different proteins and studying

the alignment of peaks as well for ssNMR data. To exploit

larger ranges of protein structure, virtual peak list was also

generated for a set of invented protein sequences to analyze

the degree of overlap. Finally, the impact of different

spectral quality parameters on the accuracy in a protein

structure calculation were tested, by performing structure

calculations using the program Cyana (Herrmann et al.

2002), based on simulated peak lists.

Solid state NMR

Despite the challenges of solid-state protein NMR,

increasingly more protein structures are being published

(Castellani et al. 2002; Lange et al. 2005; Manolikas et al.

2008; Zech et al. 2005; Loquet et al. 2008; Thiriot et al.

2004). In solid state NMR, line widths are generally much

larger due to proton dipolar couplings and/or structural

heterogeneity, particular observed for fibril structures,

often studied by ssNMR (Tycko 2006; Naito and Ka-

wamura 2007). Another issue is the reduced sensitivity in

ssNMR, compared to liquid state NMR that limits the

number of dimensions possible in an experiment. Typical

ssNMR experiments are 2D or 3D experiments correlating
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backbone or side chain 13C and 15N chemical shifts. Fig-

ure 1 shows an excerpt of an ssNMR 2D 13C–13C Dipolar

Assisted Rotational Resonance (DARR) (Takegoshi et al.

2001) spectrum of Ubiquitin, containing cross peaks for

carbons close in space, shown together with the simulated

spectrum with the picked peak positions indicated. It

illustrates that with increasing line width, the signals

merge, hence the number of observable cross peaks

decreases. The simulated spectrum with a Gaussian line

width of 0.3 ppm, corresponding to a full width at half

maximum height of 0.707 ppm, resembles the experimen-

tal spectrum reasonably well. To be more specific, 79.2 %

of the peaks in the simulated spectrum (SS) can be refound

in the observed spectrum (OS) whereas 79.1 % of the

peaks in the OS, were present as well in the SS. Matches

were allowed within 0.6 ppm, the most frequent difference

in the peak positions is 0.0745 ppm (highest column in

histogram) (see Figure S2a in Supporting Material). The

main difference between observed and simulated spectra is

in the peak intensities, where the experimental data has a

45 40 35 3045 40 35 30 25 45 40 35 30 2525

65

65

60

60

55

55

50

50

45

45

40

40 a

ed

cb

f

Fig. 1 Comparison of simulated and experimental spectra of Ubiq-

uitin. a–e Excerpt showing a crowded region of 2D 13C–13C through

space correlation spectra simulated by VirtualSpectrum, the intensity

is depicted as a contour plot. The Gaussian line width, C (Eq. 7a, 7b),

of the peaks in the direct dimension is 0.1, 0.2, 0.3, 0.5 and 1.0 ppm

for a–e corresponding to a full width at half maximum height of

2.355C ppm. In the indirect dimension the above-mentioned line

width was multiplied with 1.3. All other parameters are as described

in the ‘‘Methods’’ section. The chemical shifts from BMRB id 7111

and the structure from pdb id 1ubq was used. The diagonal signals

were not simulated. Overlapped and resolved peaks (Eq. 11) are

highlighted with green and red disks, respectively. f Experimental 2D

13C–13C DARR spectrum (Takegoshi et al. 2001) with picked peaks

used for quantitative comparison of the spectra shown as black

crosses, the diagonal signal is highlighted with a dashed line. The

spectrum was acquired with a mixing time of 20 ms. The sample

consists of hydrated microcrystals recorded using a Bruker 700 MHz

Avance II spectrometer at 12 kHz spinning using standard 4 mm

double resonance Bruker probe. 80–100 kHz SPINAL-64 1H decou-

pling was applied during direct and indirect acquisition periods, and

acquisition times of around 30 ms were used. Acquired with 400

points and 200 ppm spectral widths in the indirect dimensions using

88 scans
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complex dependency on the local structure and dynamics

of the proteins. The correlation coefficient for the peak

height for the matched peaks is 0.647 (see Figure S2b in

Supporting Material). Another difference in the appearance

is that noise is observed in the experimental spectrum;

whereas the noise is implicitly accounted for in the simu-

lated spectra [see Eqs. (8)–(10)]. We emphasize that our

aim with VirtualSpectrum is not to produce peak lists that

are completely identical to observed data. This will never

be the case, since we deliberately include randomized

errors in our implementation both for the intensity (Eq. 5)

and for the peak positions (Eq. 9 and through the parameter

sl described in the ‘‘Methods’’). These errors were intro-

duced to emulate, in a stochastic manner, the complex

features in real spectra with deviations from a simple sin-

gle-distance dependence (Eq. 4) for the intensity and dis-

tortions in peak positions due to noise.

It is evident that increasingly fewer peaks are observed,

due to signal overlap, as the line width increases. For the

analysis presented here, we define a peak at position, ci,

with local density qi (Eq. 7a, 7b) to be resolved if for all

other signals qj:

qj cið Þ\0:1qi cið Þ ¼ 0:1hi ð11Þ

VirtualSpectrum was applied to simulate peak lists for

various common 2D and 3D ssNMR correlation spectra for

different proteins while incrementing the simulated reso-

nance line widths. (see Fig. 2). We compare the overlap in

the spectra by analyzing the fraction of observed picked

peaks, which are resolved, fres, for a certain line width:

fresðCÞ ¼ NpeakðCÞ=NpeakðC0Þ ð12Þ

where Npeak(C) is the number of peaks in the peak list

produced with Gaussian line width, C, and C0 is the

smallest line width analyzed. This fraction was plotted as a

function of the Gaussian line width, ranging from 0.1 to

1.0 ppm, shown in Fig. 2 top. Note that a Gaussian line

width, C, corresponds to a full width at half maximum

height of 2.355C ppm. Several trends appear in accordance

with expectations. Firstly, overlap is more pronounced in

the 2D spectrum compared to the 3D spectra as expected.

For example, for GB1, the fraction of observed peaks for a

Gaussian line width of 0.3 ppm is fres(0.3) = 0.67 and 0.93

for 2D DARR and 3D NCACO, respectively. Secondly, it

is notable that most peaks are resolved among the 3D

spectra in the NCACX and, in general, fewest in the

NCACO/CONCA. This is consistent with the larger dis-

persion found for Ca compared to C0 and the large dis-

persion found in the side chain resonances (‘‘CX’’) present

in NCACX/NCOCX spectra. This suggests that C0 reso-

nances might be a bottleneck for ssNMR resonance

assignments. Finally, it is seen here also that larger proteins

have more overlapping signals as a smaller fraction of

peaks is resolved with increasing protein sizes through

GB1 \ Ubiquitin \ HEWL. For example for a Gaussian

line width of 0.3 ppm for the NCACO, the fraction of

observed peaks are fres(0.35) = 0.91, 0.68, and 0.66, for

GB1, Ubiquitin, and HEWL, respectively. Our analysis can

also be applied to make simple queries, e.g. if one has a

protein of the size of GB1 and wish to be able to acquire an

NCACX spectrum with at least 90 % peaks resolved then,

based on the curve in Fig. 2, this would only be possible if

a sample can be prepared with a Gaussian line width of

maximum 0.3 ppm.

We have used the peak lists generated by VirtualSpec-

trum to analyze the difficulty of grouping peaks, from

ssNMR spectra, into proper residue spin systems. The

position of each peak is subject to distortions in the posi-

tion both due to noise present in the spectrum, as modeled

here by Eq. 9, but also owing to overlap with other signals.

This leads to a variation in the peak position of the same

nuclei within the groups of peaks belonging to the same

residue. Here this variation was quantified by grouping all

ssNMR peaks found in the 3D peak lists generated by

VirtualSpectrum (the experiments analyzed in Fig. 2)

according to the residue number of the N backbone atom. If

a peak was a result of merging of more than one signal, the
15N chemical shift of the peak was included in the analysis

for all the corresponding residues. The standard deviation

of all peak coordinates with 15N shifts within the same

residue peak group (spin system) was calculated and the

average, hri, of this standard deviation was calculated

among all such peak groups for the protein. This quantity

can be considered as the typical alignment error when

trying to connect peaks to generate spin systems.

This alignment error is shown for the three different

proteins, as a function of the resonance line width (Fig. 3).

Unsurprisingly, the alignment error increased with the

resonance (Gaussian) line width, C. The smallest resonance

line widths, usually attainable in ssNMR,

0.2 \C\ 0.5 ppm, for GB1 and Ubiquitin, the alignment

error is smaller than C, meaning that the alignment error is

dominated by errors in the peak position, arising from noise

in the spectra. HEWL is a larger protein; with more

overlapping signals for relatively small line widths (see

Fig. 2). In contrast to the trend for GB1 and Ubiquitin

discussed above, for HEWL (and for GB1 and Ubiquitin

for larger line widths) the average alignment error becomes

approximately equal to the Gaussian line width. This

indicates that the alignment error is predominantly caused

by distortions in peak positions, due to overlap between

signals in the spectra. Our findings here are based on the

assumption that Eq. 9 can describe the error in the peak

position. We argue that this is a sound description of the

error although systematic noise such as baseline distortions

are not included in the model and, the constants used in the
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equation are heuristic parameters, which can be set by the

user. This analysis underscores the difficulty in generating

correct residue spin systems from ssNMR peaks, in par-

ticular for larger proteins, since there would be a risk of

incorrectly aligning peaks not belonging to the same resi-

due. Hence, this would lead to the formation of wrong spin

systems, which are supposed to form the basis for the

resonance assignments.

We have analyzed the effect of increasing line width,

and of using different NMR experiments, on the ssNMR

resonance assignment of GB1 using VirtualSpectrum and

our software, GAMES_ASSIGN (for automatic assignment

of resonances), in a parallel study (Nielsen et al. 2014). In

that study we show that resonance assignments of GB1 are

reliable, using the 2D and 3D experiments described above,

for a Gaussian line width up to 0.5 ppm. Beyond this line

width the assignment errors increase rapidly. We also

demonstrate, by expanding the data set to include other

simulated spectra, that the success of the assignment can be

improved by including more experiments. Our analysis

also showed that experiments, such as N(CO)CACX and

CAN(CO)CX involving Ca were the most successful, but

N- H HSQC
HCO
HNCO

15 1

CONCA
NCACO
NCACX
NCOCX
C- C 2D DARR13 13

GB1 proton

GB1 ssNMR

GB1 IDP

Ubiquitin proton

Ubiquitin ssNMR

Ubiquitin IDP

HEWL proton

HEWL ssNMR

HEWL IDP

NOESY
N- H HSQC
N- H HSQC-NOESY

15 1

15 1

H -NOESYN

f re
s

Γ / ppm

Fig. 2 Signal overlap in NMR peak lists derived by VirtualSpectrum.

Line plot of the fraction of observed picked resolved peaks, fres

(Eq. 12), as a function of the Gaussian line width, C (Eq. 7a, 7b), for
1H (liquid state NMR) and 13C (ssNMR) in the direct dimension,

shown for GB1 (left), Ubiquitin (middle), and Hen Egg White

Lysozyme (HEWL, right). Different experiments are distinguished

with different colors (see annotations). Data is shown for solid state

NMR (labeled ‘‘ssNMR’’, top), 1H and 15N-edited liquid state NMR

(proton, middle), and using chemical shift data (see text) for

unstructured/intrinsically disordered proteins (IDP, bottom). For the

indirect dimension, a line width, Cind = kindC, proportional to the line

width in the direct dimension was used; for the ssNMR data

kind = 2.0 was used for both 13C and 15N. For the liquid state NMR

experiments we used: kind = 1.5 for NOESY and HN-NOESY,

kind = 2.0 and 10.0 for 1H and 15N, respectively, in 15N-HSQC-

NOESY. kind = 6.0 was used for 15N in both 15N-HSQC and HNCO

whereas kind = 2.0 was used for 13C in both HCO and HNCO. These

line width were used in all spectra of the same type described both in

the text and in other figures. The protein structures used to generate

the through-space transfer intensities were from pdb ids, 2igd, 1ubq

and 1vdq for GB1, Ubiquitin and HEWL, respectively. The used

chemical shifts were from BMRB ids; for ssNMR: 17810, 7111 and

4831(backbone) ? 4563(side chain) for GB1, Ubiquitin and HEWL,

respectively, for proton NMR: 7280, 5387 and 4831(C0/
N) ? 4562(HN) for GB1, Ubiquitin and HEWL, respectively, and

for unstructured proteins: 16627, 16626 and 18365 for GB1,

Ubiquitin and HEWL, respectively
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4D experiments were even more successful. This illustrates

how VirtualSpectrum is useful when evaluating and com-

paring the impact of using different experiments, without

the need to acquire experimental data.

Liquid state NMR with natural abundance

1H homonuclear liquid state NMR has been used for dec-

ades to study relatively small proteins (Wüthrich 1986;

Williamson et al. 1985; Driscoll et al. 1989; Simorre et al.

1991; Wittekind et al. 1992; Bouaziz et al. 1992; Breg et al.

1995). Nowadays, most proteins studied by NMR utilize
15N and 13C isotope labeling through bacteria expression or

peptide synthesis (Kigawa et al. 1999; Marley et al. 2001;

Kainosho et al. 2006; Goto and Kay 2000) to overcome

problems related to overlapping signals and facilitate res-

onance assignments. In cases where such labeling tech-

niques would be problematic, or if one would prefer a less

expensive solution, it is often possible, though more chal-

lenging, to study the protein using the classical natural

abundance approach. For this approach there is a limitation

in protein size both due to increasing signal overlap and

increasing line width due to relaxation.

NOESY is the fundamental NMR experiment for

deriving the structure of a protein with natural abundance

NMR (Jeener et al. 1979; Kumar et al. 1980). The NOESY

spectrum of HEWL was simulated using VirtualSpectrum.

The overall appearance of the simulated spectrum is rather

similar to the observed (see Fig. 4), i.e. the signal to noise

ratio in the spectra and the resolution in the spectra are

comparable. There are differences in the peak positions

between the spectra, we argue that these are primarily due

to small differences between the chemical shift used for

simulating the spectra (bmrb ID 4563) and the actual

chemical shift of our sample, under the exact conditions

used here for the experimental NOESY spectrum. Using

the same quantitative comparison as described for the

DARR spectrum, here 60.4 % and 61.5 % of the peaks can

be found within 0.05 ppm, when searching for the simu-

lated peaks in the observed spectrum and vice versa,

respectively. Again, as with the ssNMR through-space

transfer spectrum, DARR, the most notable difference is in

the intensities of peaks. In this case the correlation coef-

ficient is 0.273, when comparing data points in the spectra

as described above for DARR. However, the correlation

coefficient increases to 0.469 when not comparing the data

points at the exact same coordinate but rather comparing

pairs of matched peak heights at the individual peak

maxima (data not shown). VirtualSpectrum uses a sim-

plistic phenomenological approach to derive the intensities

(Eq. 4) for through-space transfers of magnetization,

neglecting third spin interactions, such as spin-diffusion

and, hence, differences in the intensities are to be expected.

It is possible to use signal positions and intensities simu-

lated by other tools as input for VirtualSpectrum, but this

option was not demonstrated here.

The amount of overlap between signals was analyzed

quantitatively, measuring fres (Eq. 11), by simulating

spectra using VirtualSpectrum with different (Gaussian)

line widths ranging between 0.004 and 0.028 ppm. Fewer

peaks are observed in the NOESY spectrum with larger

line widths and the amount of overlap increases with the

size of the protein (Fig. 2), e.g. fres decreases to 0.50 for

GB1 and ca. 0.3 for Ubiquitin and HEWL. In this analysis,

degenerate assignments of non-identical methylene protons

were not considered as overlap (but regarded as one single

signal), whereas distinct assignments for methylene pro-

tons were normally treated with the possibility of overlap

between signals. The overlapping signals can be partly

resolved by using 15N isotope labeling and acquiring a 3D
15N–1H-HSQC-NOESY spectrum. This spectrum was

simulated with VirtualSpectrum resolving of ca. half of the

signals, which overlap in the 2D NOESY. This relationship

also holds, approximately, when comparing to the HN only

part of the 2D NOESY, which can be considered as a

projection of the 3D spectrum. The 2D 15N–1H HSQC

spectrum is another 2D-projection of the 3D spectrum. In

the HSQC almost all peaks are still resolved with

increasing line width and, counter-intuitively, more peaks

overlap in the 3D spectrum. This is because the signals that

still overlap in the 3D spectra are mostly those with a

common HSQC peak, between two protons of the same

methylene group (data not shown).

0.0
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0.4
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0.8

1.0
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< >
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Fig. 3 Average alignment error (see text) when comparing the 15N

chemical shift for the same residue in spectra of NCACX, NCOCX,

NCACO and CONCA (see Fig. 2), shown as a function of the

Gaussian line width, C (Eq. 7a, 7b), for GB1 (full line), Ubiquitin

(dashed line), and HEWL (dotted line). The line y = x is shown as a

thin line for reference
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Intrinsically disordered proteins

Traditionally it was believed that protein function was

dependent on the unique folded tertiary structure, deter-

mined by the amino acid sequence (Anfinsen 1973; Bryn-

gelson et al. 1995). However, recent progress in protein

analysis has revealed that this is not always true. Some

proteins are intrinsically disordered (IDPs) having no well-

defined tertiary structure (Wright and Dyson 1999; Dolgikh

et al. 1981; Bychkova et al. 1988; Dunker et al. 2001;

Dyson and Wright 2005; Tompa 2002; Uversky 2002) or

only fold in complex with targets (Dyson and Wright

2002). Liquid state NMR is one of the preferred experi-

mental techniques to study IDPs, since it allows measuring

site-specific time-averaged chemical shifts and relaxation

parameters providing information on the dynamics and

secondary structure propensities (Bertoncini et al. 2005;

Jensen et al. 2009; Meier et al. 2008; Mittag and Forman-

Kay 2007; Shojania and O’Neil 2006; Sugase et al. 2007).

However, due to the scarcity of regular secondary struc-

ture, the NMR spectra suffer from poor resonance disper-

sion leading to severe overlap between signals. The nuclei

with the highest dispersion relative to the line width are

backbone 15N and 13C0, and therefor often NMR experi-

ments used for studying IDPs are based on these nuclei.

VirtualSpectrum was applied to simulate 2D HCO and
1H–15N HSQC correlation spectra. Simulated and observed

spectra, for the intrinsically disordered protein, hNL3-Cyt,

are practically superimposable as seen in Fig. 5 (except for

minor forms, probably due to slow cis/trans isomerism,

present in the experimental data). It should also be noted

that the peak shapes for the observed and simulated spectra

are almost identical validating the use of a Gaussian line-

shape. In some cases a Lorentzian shape or multiplet

pattern may be more appropriate, which is also possible to

use in VirtualSpectrum.

We have used published chemical shifts for GB1,

Ubiquitin and HEWL in a denatured (unstructured) state

(Vajpai et al. 2010; Sziegat et al. 2012) as input for Vir-

tualSpectrum to simulate NMR correlation spectra and

compare it to the structured state. It is clear that there is

much more overlap in the HSQC spectra for the unstruc-

tured compared to the structured state. For Ubiquitin, in a

simulated 2D 1H–15N HSQC using a Gaussian line width of

0.02 ppm, all signals were resolved for the structured state,

whereas only 83 % were observed for the unstructured

state (Fig. 2). The dispersion power, i.e. the ability to

resolve 2D resonance correlations, for 15N and 13C0 was

analyzed quantitatively by using VirtualSpectrum by sim-

ulating peak lists for 2D HCO and 1H–15N HSQC and 3D

HNCO with increasing resonance line width (see Fig. 2

bottom). In our hands, for the three proteins analyzed, 15N

has a slightly better dispersion power than 13C0, as the

fraction of observed peaks decreases a little more in the 2D

HCO compared to the 1H–15N HSQC spectra when

increasing the line widths. By comparison, the 3D HNCO

spectrum is much more resolved with almost all signals

observed separately for all proteins at the line widths tes-

ted. E.g. the minimum fraction of observed peaks, fres, is

0.958 at proton Gaussian line width, C = 0.02 ppm, for 3D

HNCO of Ubiquitin compared to fres = 0.70 and 0.71 for

HCO and HSQC, respectively, at the same line width.

Effect of protein size and secondary structure

on spectral overlap

We have studied the overlap in NMR spectra for only three

relative small protein structures, with a global fold

Fig. 4 Comparison of experimental NOESY spectrum (left) and

NOESY spectrum of HEWL simulated by VirtualSpectrum (right). A

proton line width of 0.012 ppm and 0.018 ppm in the direct and

indirect dimensions, respectively, was used. For all other parameters,

see ‘‘Methods’’ and legend to Fig. 2. (left) Experimental 600 MHz

watergate-NOESY spectrum, showing picked peaks used for quan-

titative comparison with black crosses, acquired with a 500 ms

mixing time using 400 9 562 points and a spectral with of 9,000 Hz

acquired on a 2 mM sample of HEWL (EC 3.2.1.17; from Sigma) in

90/10 % v/v H2O/D2O, pH 3.5; T = 35 C
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containing both helixes and beta sheets. We wish to extend

the range of these simulations, to more systematically

address the effect of protein size and secondary structure

on the overlap in NMR spectra. Therefore the 15N–1H 2D

HSQC spectra were simulated for a set of invented proteins

of different sizes and secondary structures analyzing the

fraction of observed peaks (see Fig. 6). The spectra were

simulated with a Gaussian line width of 0.015 ppm and

0.09 ppm for 1H and 15N, respectively, and the other

parameters were set as described in the legend to Fig. 1 and

in the ‘‘Methods’’. The sequences for the invented proteins

were generated randomly using statistics on protein

sequence, secondary structure and chemical shifts from a

library of 681 protein chains (Nielsen et al. 2012). The

secondary structure along the sequence was built using

occurrences of 32.9, 24.1 and 43.0 % for helix, beta sheet

and coil structures, respectively (based on statistics in the

library). For sequences with mixed structure, the first

32.9 % residues were set to be helix, the next 24.1 % beta-

sheet and the final 43 % coil. For the predominantly helix

sequences, the same numbers were used—except that all

beta-sheet residues were replaced with helix residues, for

the predominantly beta sheet sequences the opposite

replacement was done and for the unstructured sequences

only coil was used. The sequences were constructed ran-

domly by using the conditional probabilities, for each

amino acid for a given secondary structure, from the

library. The chemical shifts were drawn from a normal

distribution using average and standard deviation for the

secondary structure and amino acid specific chemical shifts

in the library. The chemical shifts for the unstructured

sequences were taken from a library of neighbor corrected

sequence-specific random coil chemical shifts of intrinsi-

cally disordered proteins (Tamiola et al. 2010) using the
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Fig. 5 Experimental spectra

(left) and spectra simulated by

VirtualSpectrum for the

intrinsically disordered protein,

hNL3-Cyt (Wood et al. 2012;

Paz et al. 2008) with chemical

shifts from BMRB id 17289.

The very low intensity peaks in

the experimental spectra (red

only contours) are due to minor

forms. A Gaussian line width of

0.006 ppm in the direct (1H)

dimension and 0.012 and

0.036 ppm in the indirect 13C

and 15N dimension,

respectively. All other

parameters for VirtualSpectrum

are as described in ‘‘Methods’’
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reported rms values of 0.64 ppm and 0.14 ppm for 15N and
1H HN, respectively, as the standard deviation in the ran-

dom number generation.

It was found that for mixed secondary structure

sequence, the fraction of observed peaks decreases

approximate linearly to the number of residues studied (24

to 568), with a slope of ca. 0.0002. For a protein of ca. 200

residues fres = 0.97 on average. Note that this means that

up to 6 % of the peaks overlap for such a protein (if each

overlap in pairs of two). Overlapping peaks in 15N–1H 2D

HSQC spectra also implies that the corresponding spin

systems will have degenerate, ‘‘15N–1H roots’’, and there-

fore spin system generation through 15N–1H alignments, is

potentially problematic. Furthermore, it is seen that protein

sequences with predominantly helix residues (57 % of the

residues) have slightly fewer resolved peaks compared to

predominantly beta sheet sequences and mixed secondary

structure sequences with a similar or larger number of

residues (Fig. 6). This is consistent with the larger chem-

ical shifts dispersion found in beta-sheets compared to

helices. Spectra were also simulated for sequences of

unstructured proteins, with chemical shifts taken from a

library of unstructured proteins (Tamiola et al. 2010). It is

seen here that more peaks overlap in this case with only

82 % peaks observed on average for a structured protein

with ca. 200 residues (Fig. 6). This illustrates the difficulty

of assigning unstructured proteins of medium size with

conventional spectra, prompting for the use of spectra with

more dimensions, e.g. 4D spectra, for assignments.

Impact of spectral resolution and sensitivity on protein

structure calculation

Using good quality experimental data is very important for

the accuracy of structure determination. This was quanti-

fied here by the use of Cyana structure calculations

(Herrmann et al. 2002), based on data simulated using

VirtualSpectrum. The structure was calculated for the 129

amino acid protein HEWL using simulated data for 3D
15N-HSQC-NOESY and 13C-HSQC-NOESY. The NOESY

data were simulated using default Cyana parameters and

different input settings: increasing line widths and with

differences in sensitivity, as modeled by the signal/noise

ratio and number of added noise peaks (see ‘‘Methods’’ and

legends to Fig. 7). In addition, peak assignment tolerances

were set to 2.0 times the Gaussian line width, C, in each

dimension. For the indirect proton dimension, a line width

of 2 * CH was used whereas for the indirect 13C/15N

number of residues

f re
s

Fig. 6 Fraction of observed peaks in simulated 2D 15N–1H HSQC

spectra for invented proteins. The spectra were simulated as described

in the main text. The fraction of observed peaks, fres, calculated as the

number of observed peaks divided by the number of residues—1—

number of prolines in the sequence, is shown as red, green, and blue

disks for, mixed secondary structure, predominantly beta sheet and

predominantly helix, respectively. The black disks show fres in the

HSQCs for sequences with no secondary structure. For all displayed

data points, three repetitions of the simulation were performed and the

averages of fres from the three simulations are shown here
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Fig. 7 The impact of line width, signal/noise and noise peaks on

protein structure accuracy and precision studied by Cyana and

VirtualSpectrum. The diagram shows data for Cyana structure

calculations of the 129 amino acids protein HEWL based on 3D
15N-HSQC-NOESY and 13C-HSQC-NOESY spectra simulated by

VirtualSpectrum (see also Fig. 2 middle row, right column). Each

symbol represents a Cyana structure calculation with automatic peak

assignments and distance calibration using default Cyana parameters

(Herrmann et al. 2002). The outcome of each structure calculation is

shown as a function of CH in the direct proton dimension. The

accuracy, measured as the heavy atom RMSD against the reference

structure (pdb ID = 1vdq), is shown with filled circles. The precision,

measured as the heavy atom average heavy RMSD to the mean

structure within the 20 structure ensemble, is shown with filled boxes.

Solid connecting lines indicate values for a fraction of added noise

peaks, fN (see ‘‘Methods’’ and Eq. 10) of 2 % the total number of

peaks and a signal to noise, SN () hmin = 1/SN, see ‘‘Methods’’) of

75 whereas broken lines indicate values with fN = 10 % and

SN = 75. Values above 5 Å are shown truncated to 5 Å, see also

Table S1 in the Supporting Material for more simulations
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dimensions a line width of 10 * CH was used in both cases

(for more parameters see legend to Fig. 7). Cyana performs

automatic structure calculations using the un-assigned

simulated peak lists, and is tolerant to noise peaks, which

are filtered out during the structure calculation. Increasing

the line width leads to more spectral overlap (fewer peaks

observed, see Fig. 2 middle row, right column), but also

leads to the need for larger peak assignment tolerances

during the automatic peak assignment procedure. Conse-

quently, on average, Cyana had more assignment possi-

bilities for each peak for larger line widths. During the

iterative structure refinement and peak assignments algo-

rithm in Cyana, peak assignments that are not consistent

with the candidate structure are removed. Hence during the

final cycle, Cyana had unique assignments for most of the

peaks leading to a well-established structure (see below),

but with an increasingly slower convergence for the data

set for larger line widths and larger tolerances (data not

shown).

The accuracy and precision for the structure calculations

are shown in Fig. 7 as a function of the Gaussian line

width, C. It is seen that the accuracy, measured as the

RMSD deviation from the reference structure, remains

approximately constant on a converged value for line

widths up to 20 ppb in the direct proton dimension (all

other line widths were proportional to this line width). For

data with good sensitivity, modeled here by a signal/noise

ratio, SN = 1/hmin (see ‘‘Methods’’), of SN = 75 and

adding only a fraction of noise peaks fN = 2 % (Eq. 10),

the converged accuracy RMSD levels are ca. 1.6 Å for

small line widths up to 28 ppb (where 37 % fewer peaks

are observed compared to the spectrum with smallest line

width), and increases to 2.05 Å for C = 32 ppb, then

diverges for C = 40 ppb (RMSD = 19.9 Å, see Table S1).

Conversely, for data of lesser sensitivity; SN = 25,

fN = 10 %, the RSMD levels out at ca. 1.65 Å for small

line widths and starts suddenly to diverge for C C 24 ppb.

It appears that decreasing the data quality does not lead to a

gradual decrease in the accuracy of the structure, but rather

that the poorer data is remedied by the Cyana algorithm,

until a threshold is reached for the data imperfections

beyond which the structure calculation diverges. For the

precision of the structure the scenario is slightly different

with ensemble heavy atom RMSDs against the average

structure of ca. 0.8 and 1.1 Å for small line widths (Fig. 7)

for the good sensitivity and less sensitive data (see above),

respectively. The precision RMSD increases gradually for

the good sensitivity data from a line width between 20 and

32 ppb (see Fig. 7 and Table S1). Furthermore (see Table

S1), noise peaks seem to be better tolerated in structure

calculations than low SN (at least for the ranges studied

here), with converged structures for fN = 10 and 20 %

(SN = 75 and C = 4, 12 and 28 ppb) whereas low

SN = 10 produces diverged structures in all cases

(fN = 2 % and C = 4, 12 and 28 ppb) and SN = 25 a

diverged structure for the largest simulated line width

C = 28 ppb.

Conclusion

We have presented a tool, VirtualSpectrum, for generating

assigned peak lists for various multi-dimensional NMR

experiments. VirtualSpectrum can serve to produce artifi-

cial data to test NMR procedures in cases where experi-

mental data is insufficient or problematic to obtain.

VirtualSpectrum is fast, flexible, robust and produces peak

lists, which can be tuned to match experimental quality,

and overall appearance, of most multi-dimensional NMR

experiments. VirtualSpectrum uses an analytic expression

to represent the spectrum, and the peak positions are

derived by numerical routines that identify local maxima,

seamlessly handling overlap between signals. Our analysis

of a few case studies shows, as expected, that the amount of

overlapping peaks increases with the resonance line width

and proteins size, and that more overlap is present in

spectra for proteins in an unstructured compared to a

structured state. In addition proteins with predominantly

helical secondary structure have more overlap compared to

mixed secondary structure and with predominantly beta-

sheet structure. Furthermore, we demonstrated the appli-

cability of VirtualSpectrum showing that (1) spin system

generation, for relatively large line widths, is prone to

errors in peak alignments approximately equal to the

Gaussian line width, (2) backbone 15N is equally good or

slightly better than 13C0 to resolve peaks in 2D spectra for

intrinsically disordered proteins, and (3) for solid state

NMR side chain carbons are better than Ca, which is again

better than C0 to resolve peaks in 3D spectra. We expect

that VirtualSpectrum will find widespread applications in

the future for the generation and analysis of NMR data, and

in particular, will be used to evaluate the performance of

software for structure determination or resonance assign-

ments. Here VirtualSpectrum was applied along with

Cyana to test the influence of spectral resolution and sen-

sitivity on the accuracy of structure calculation revealing

that structure calculations with Cyana can tolerate overlap

in the spectra with 37 % fewer peaks observed for good

sensitivity data, whereas calculations diverge with less

overlap for data corresponding to lesser sensitivity.
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Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New

York

Zech SG, Wand AJ, McDermott AE (2005) Protein structure

determination by high-resolution solid-state NMR spectroscopy:

application to microcrystalline ubiquitin. J Am Chem Soc

127(24):8618–8626

Zhu LM, Reid BR (1995) An improved noesy simulation program for

partially relaxed spectra—birder. J Magn Reson, Ser B

106(3):227–235

Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M,

Shimotakahara S, Chien CY, Powers R, Montelione GT (1997)

Automated analysis of protein NMR assignments using methods

from artificial intelligence. J Mol Biol 269(4):592–610

66 J Biomol NMR (2014) 60:51–66

123


	VirtualSpectrum, a tool for simulating peak list for multi-dimensional NMR spectra
	Abstract
	Introduction
	Methods
	Calculating the model signals
	Deriving the observed peaks
	Parameters used and a guide for choosing parameters for the simulation of NMR peak list with VirtualSpectrum

	Results and discussion
	Solid state NMR
	Liquid state NMR with natural abundance
	Intrinsically disordered proteins
	Effect of protein size and secondary structure on spectral overlap
	Impact of spectral resolution and sensitivity on protein structure calculation

	Conclusion
	Acknowledgments
	References


